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Abstract—this work is concerned with using a methodology for eliminating the effect of unwanted interference in a certain di-
rection applied to the radiation pattern of a linear array antenna. An efficient method based on Particle Swarm Optimization is 
used .The amplitude of the elements in the linear array antenna is optimized in order to achieve nulls at the positions of the in-
terference. The proposed Improved Adaptive Particle Swarm Optimization (IAPSO) is an efficient method applied for optimiza-
tion. The Dolph-Chebyshev array is used to show the success of obtaining nulls at certain identified positions where interference 
occurs. The results shows the efficiency of the proposed technique in achieving perfect wide nulls with depth of -75 db using 
1700 iterations as the maximum number of iterations. Sensitivity and robustness of the proposed algorithm are tested at differ-
ent array antenna systems with different properties which prove the effectiveness of the technique proposed in achieving the 
property of interference cancellation. Further, the side lobe levels and the main beam width are preserved at their original levels 
of the main signal without being increased.  
 
Index Terms— Particle Swarm Optimization (PSO), Improved Adaptive Particle Swarm Optimization (IAPSO), Enhanced Particle Swarm Optimization 
(EPSO), null placement, linear antenna array, side lobe level, wide nulls and Uniform Linear Array(ULA). 

——————————      —————————— 

1 INTRODUCTION                                                                     
lectromagnetic systems are used widely nowadays. The 
pollution of the electromagnetic environment was the 
main problem that prompted the study of the nullifying of 

the radiation patterns techniques. These techniques are very 
important to be applied in various applications such as radar, 
sonar and other communication systems such as satellite [1]. 
They help to minimize the degradation in the signal to noise 
ratio that happens due to the interference. The main concern 
during the process of data transfer is the conformity of the 
received signal with the transmitted signal. This concept is 
very challenging due to the fact of exposing the transmitted 
signal to many factors that may result in either changing the 
data structure or missing some of this data. Those factors can 
be intended or due to simple distortion and noise in the envi-
ronment and can also be due to device malfunctions. A lot of 
research has been made on the change of certain signal posi-
tions into nulls. Some conventional methods where used for 
achieving nulls at certain positions. The wide nulls can be 
done by making multiple adjacent nulls in the radiation pat-
tern [2]. Using the evolutionary optimization techniques are 
the most efficient in forming these wide nulls. Wide nulls 
forming are achieved by controlling the array weights called 
the excitation coefficients.  
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The nulling methods are generally based on controlling the 
complex weights (both the amplitude and the phase), the am-
plitude only, the phase-only, and the position only of the array 
elements. Interference suppression with complex weights is 
the most efficient because it has greater degrees of freedom for 
the solution space [3, 4]. However, it is a very expensive 
method due to the high cost of both phase shifters and varia-
ble attenuators for each element of the array. Moreover, as the 
number of elements of the array increases, the computational 
time of finding the values of the elements amplitude and 
phase will increase. The amplitude only control uses a set of 
variable attenuators to adjust the element amplitudes. If the 
element amplitudes possess even symmetry about the center 
of the array, the number of attenuators and the computational 
time are halved. The nulls are achieved by using non uniform 
excitation coefficients to impose the nulls at certain directions 
which are achieved by the optimization technique used.  

The disadvantages of the classical optimization techniques 
made the researches move towards using the evolutionary 
optimization techniques that are based upon computational 
intelligence methodology. A lot of evolutionary algorithms 
have been used before in different optimization problems. 
Examples of these algorithms are the Genetic Algorithms [5], 
the bee colony [6], the ant colony [7], the backtracking algo-
rithm and clonal selection [8]. The used optimization tech-
nique in this paper is the Particle Swarm Optimization.  It was 
found to have a lot of advantages over other evolutionary 
techniques such as it does not have overlapping and mutation 
calculation. 
The search can be carried out by the speed of the particle so 
only the most optimist particle can transmit information onto 
the other particles, and the speed of the researching is very 
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fast, also The calculation in PSO is very simple. Compared 
with the other developing calculations, it occupies the bigger 
optimization ability and it can be completed easily. An im-
proved PSO was used that made the results enhanced in the 
null depth of the achieved nulls in the direction of the interfer-
ence. These results were compared with the results of the pre-
vious research done in the same field [9] to add more en-
hancement to the achieved results before which will be dis-
cussed later. 
 

In this paper, a linear symmetric array antenna with equal-
ly spaced elements is considered. The optimal values of the 
excitation coefficients are obtained while keeping the phase 
difference between any two elements equals zero. Wide nulls 
are achieved by the optimization of only the element ampli-
tudes of linear antenna arrays using an Improved Adaptive 
Particle Swarm Optimization (IAPSO). This IAPSO works by 
having a Cauchy mutation [10] on both the cognitive and so-
cial parameters. This solves the problem of the particles oscil-
lation in PSO between their previous best position and the 
global best position found by all particles before it converges. 
This prevents the swarm’s particles from being stuck at a local 
best position. So, the ability of the global search is very much 
enhanced after the use of this modification. Simple Particle 
Swarm Optimization [11], Enhanced Particle Swarm Optimi-
zation (EPSO) [9] and Novel Particle Swarm Optimization [12] 
used before where methods of modification for the simple 
PSO that were used in optimizing the same problem. The su-
periority of the used IAPSO is shown in this article. The de-
sign of the Dolph-Chebyshev array was successfully done us-
ing the MATLAB 2011 program. The initial excitation coeffi-
cients of this design were the input to the simulated program 
of IAPSO in MATLAB to get the optimized excitation coeffi-
cients 

 
The article is arranged as follows: In Section 2, the linear array 
pattern used is defined. Its geometry, structure and the design 
equations used. Section 3 gives a brief description of the clas-
sical PSO, EPSO and the new IAPSO.  In Section 4, simulated 
results of the IAPSO are shown along with the comparison 
results of the IAPSO and the EPSO and the classical PSO. Sec-
tion 5, shows the Sensitivity Analysis of the used IAPSO algo-
rithm to show its robustness when using different array an-
tenna systems with different properties and finally Section 6 
concludes the article. 

2. LINEAR ARRAY DESIGN  
A classical Chebyshev linear array design is used. The Con-
ventional Dolph-Chebyshev arrays were introduced by Dolph 
in 1946. They are based on mapping the Chebyshev polyno-
mial into the array’s space factor. These polynomials are origi-
nated as possible solutions of a second order ordinary differ-
ential equation with variable coefficients. Dolph stated that for 
a desired Side Lobe Ratio (SLR), the Chebyshev polynomial of 
order (L-1) can be mapped into the space factor of a Uniform 
Linear Array (ULA) of L elements. This results in an equir-
ipple Side Lobe Levels and a main beam that is the narrowest 

possible. The Chebyshev array offers improvements over simi-
lar pre-existing arrays in terms of directivity and half power 
beam width. These arrays can have different number of ele-
ments, different side lobe levels, but the same inter-element 
spacing. This design guarantees the controllability of the max-
imal side lobe level (MSLL). Using the Chebyshev polynomi-
als, it is possible to design arrays with specific side lobe char-
acteristics. Namely, all side lobes can be designed at some pre-
scribed level. 
 
The Chebyshev array has so many areas of application. They 
can be used widely such as in radar, sonar and different com-
munication systems according to their frequency of operation. 
Since the Chebyshev array gives a narrow beam width, it can 
focus a frequency range in a smaller area. Furthermore, the 
relationship between the directivity and side lobe level for 
these arrays is optimum in that for a specified side lobe level 
the beam width is the smallest and alternatively, for a given 
beam width the side lobe level is the lowest [13]. Placing nulls 
in the antenna radiation pattern will be a complex process as 
this will alter the trade-off and introduce deterioration in side 
lobe level or directivity. 
 
One of the most eminent methods used to equate the sidelobes 
arising in the radiation pattern of antenna arrays is to utilize a 
set of polynomials referred to as Chebyshev polynomials. 
These polynomials oscillate with unit amplitude and become 
monotonically increasing or decreasing, depending on their 
order, outside this range. This property of Chebyshev poly-
nomials enabled Dolph to use them to design an equiripple 
radiation pattern [14]. 
 
A linear antenna array is designed with 2N isotropic elements 
placed symmetrically along the Z-axis with equal inter-
element spacing d (𝑑 = 𝜆/2), and N elements are placed on 
each side of the origin as shown in figure 1. The array factor 
for this structure is expressed as 
𝐴𝐴(𝜓) = ∑ 𝐼𝑛𝑁

𝑛=−𝑁 𝑒𝑗𝑑𝑛𝜓                                                   (1)   
Where 𝐼𝑛 = 𝐼𝑛𝑅𝑒 + 𝑗𝐼𝑛𝐼𝑚 are the complex excitation coefficients of 
each element in the array, (n= -N,…,-2,-1,1,2,...N), ψ=k.sin(θ) 
and k is the wave number. Therefore, the real and imaginary 
parts of the array factor are 
        𝑅𝑅{𝐴𝐴(𝜓)} = ∑ 𝐼𝑛𝑅𝑒𝑐𝑐𝑐(𝑑𝑛𝜓)𝑁

𝑛=−𝑁 − 𝐼𝑛𝐼𝑚𝑠𝑖𝑖(𝑑𝑛𝜓)       (2)                           
       𝐼𝐼{𝐴𝐴(𝜓)} = ∑ 𝐼𝑛𝐼𝑚 cos(𝑑𝑛𝜓) + 𝐼𝑛𝑅𝑒 sin(𝑑𝑛𝜓)𝑁

𝑛=−𝑁        (3) 
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Fig. 1.  Linear antenna array designs with 2N elements of equal inter ele-
ments spacing [12]. 

The case considered in this paper for the current coefficients of 
the array elements is the amplitude only control. In this 
case,  𝐼−𝑛𝑅𝑒 = 𝐼𝑛𝑅𝑒, because the excitation coefficients are real and 
symmetric around the center of the array, this gives a pattern 
which is symmetrical about the main beam direction (𝜃𝑚 = 0). 
Since 𝐼𝑛𝐼𝑚 = 0 and sin(−𝑑𝑛𝜓) = −sin (𝑑𝑛𝜓) then the imaginary 
part of AF in (3) equals 0. While, the real array factor (2) is 
reduced as following 
            𝐴𝐴(𝜓) = 2∑ 𝐼𝑛𝑅𝑒𝑁

𝑛=1 . cos (𝑑𝑛𝜓)                                 (4) 

3. PARTICLE SWARM OPTIMIZATION TECHNIQUES 
3.1 Simple Particle Swarm Optimization 
Particle Swarm Optimization is a swarm intelligence method 
for global optimization [15]. Each individual, named particle, 
of the population, called swarm, adjusts its trajectory toward 
its own previous best position, and toward the previous best 
position attained by any member of its topological neighbor-
hood. The basic PSO algorithm consists of three steps: 
(1) The positions, 𝑥𝑖(𝑘)  and velocities, 𝑣𝑖(𝑘) of the initial 

population of particles are randomly generated for the ith 
particle at time k. Where 𝑖  is the current particle number 
in the swam, 𝑖 ∈ {1, 2…., S} and S is the swarm size. 

(2) Update velocities of all particles at time k +1 as follows: 
 
𝑣𝑖  (𝑘 + 1) =
𝑤.𝑣𝑖  (𝑘) + 𝑐1 . 𝑟1 (𝑝𝑖  (𝑘) −  𝑥𝑖  (𝑘) ) + 𝑐2 . 𝑟2 (𝑝𝑔(𝑘)− 𝑥𝑖  (𝑘))                                                                                       
(5) 
Where, 𝑟1 and 𝑟2 are uniformly distributed random varia-
bles in [0,1] range. The fitness function values determines 
which particle has the best position value 𝑝𝑖(𝑘) over the 
current swarm, and also updates the global best position 
𝑝𝑔(𝑘) for the current and all the previous swarm moves. 
The three terms in the equation are presenting the current 
motion, particle own memory, and swarm influence. 
These parameters are summed with three weights, name-
ly, inertia factor,𝑤, self confidence factor, 𝑐1, and swarm 
confidence factor, 𝑐2,respectively. Velocity updates here 

are influenced by both the best global solution and the 
best local solution in the current population. 

(3) The position of each particle is updated using its velocity 
vector at time k +1 as: 

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + 𝑣𝑖(𝑘 + 1)                               (6) 
The three steps of velocity update, position update, and 
fitness calculations are repeated until a desired conver-
gence criterion is met.  

 
From the mathematic theoretical analysis of the trajectory                         
of a PSO particle [16], the trajectory of a given particle 
𝑥𝑖(𝑘) will “fly” to its local best position 𝑝𝑖(𝑘) and then to 
the global best position 𝑝𝑔(𝑘). This mechanism of infor-
mation sharing makes the PSO has a very fast conver-
gence speed. However, PSO cannot always guarantee to 
find the minimal value of a function. Usually, the particles 
converge to a local optimum. Once the particles are 
trapped in a local optimum, at which 𝑝𝑖(𝑘) is assumed to 
be the same as 𝑝𝑔(𝑘), all the particles converge at 𝑝𝑔(𝑘). 
So, the velocity equation is changed to: 
𝑣𝑖(𝑘 + 1) = 𝑤.𝑣𝑖(𝑘)                                              (7) 
When the iterations number increases, the velocity of the 
particles 𝑣𝑖(𝑘) will be close to zero due to the fact of 
that 0 ≤ 𝑤 < 1. This makes the positions of the particles 
unchanged, so the PSO will not have the capability of 
jumping out of the local optimum. 
 

3.2 Enhanced Particle Swarm Optimization (EPSO) 
To overcome this drawback in the simple PSO , a new en-
hancement was done added to it to get the EPSO algorithm 
[9]. A modification was added to the velocity equation as fol-
lows: 
 
𝑣𝑖(𝑘 + 1) = 𝑤.𝑣𝑖(𝑘) + 𝑐1 .𝑟1 .�𝑝𝑖(𝑘) − 𝑥𝑖(𝑘)�+ 𝑐2 . 𝑟2 .�𝑝𝑔(𝑘)−

𝑥𝑖(𝑘)�+ 𝑐3 .𝑟3 .�𝑝𝑓𝑑𝑟𝑖 (𝑘)− 𝑥𝑖(𝑘)�+ 𝑐4 . 𝑟4 . (𝑝𝑓𝑑𝑟
𝑔 − 𝑥𝑖(𝑘))    (8)                                                  

 
Where, 𝑐3 and 𝑐4are acceleration constants, 𝑟3 and 𝑟4 are uni-
formly distributed random variables in [0, 1] range. 
𝑝𝑓𝑑𝑟𝑖 (𝑘) 𝑎𝑎𝑎 𝑝𝑓𝑑𝑟 

𝑔 are two new local and global candidate posi-
tions that are selected by locating the individual with mini-
mum fitness to distance ratio (FDR) over all particles in the 
swarm.  
This technique was able to solve the problem of being trapped 
in a local optimum and to enhance the optimization solution. 
Its result was simulated and verified to reach a null depth of 
 -67 dB. 
 
 
3.3 Improved Adaptive Particle Swarm Optimization 

(IAPSO) 
For the Improved Adaptive Particle Swarm Optimization 
technique used in this paper, the problem of the signal inter-
ference will be solved using a new algorithm which is applied 
for the first time for this problem. 
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Adaptive wide nulling for broad-band interference suppres-
sion is achieved by perturbing the current weights of array 
elements. Simultaneously, it is always desirable to keep the 
main beam width (directivity) and the peak SLL within a cer-
tain given level. This is realized by solving minmax optimiza-
tion problem that is subject to three constrains for SLL limits, 
the prescribed depth of the wide null and main beam accepta-
ble broadening. The problem can be described as: 
𝐼𝑖𝑖𝐼𝑛 ∊ 𝑐�𝐼𝑎𝑥𝜃𝑚𝑖𝑛≤𝜃≤𝜃𝑚𝑎𝑥|𝐴𝐴(𝐼𝑛 ,𝜃,𝑑𝑛)|�                             (9) 
s.t.  MSL1 ≤ SLL & MSL2 ≤ Wide null depth & ΔBW ≤ δ 
Where AF(In,θ, dn) is described as the array factor as a func-
tion of current coefficients (In), the angle with respect to the 
direction of the array (θ) and the distance between the array 
elements (dn). θmin and θmax are the minimum and maximum 
boundries of the elevation angles for the prescribed wide null. 
S.t. means subject to constraint, C is the set of all vectors with 
complex components. The complex vector In is the optimiza-
tion parameters. SLL is the pattern peak side lobe level, MSL1 
is the prescribed value for SLL excluding the main beam band, 
MSL2 is the peak SLL in the region of wide null and ΔBW and 
δ are the change and the maximum allowable change in the 
main beam width respectively. 
 
To overcome the weakness of the PSO and improve the result 
of the EPSO, the IAPSO was used. This algorithm is mainly 
based on incorporating the Cauchy mutation into the PSO. 
That is implementing a part of the genetic algorithm which is 
the mutation into the PSO. This combination between the ge-
netic and the particle swarm makes a hybrid algorithm that 
improves the results of the optimization. c1,c2 are taking ran-
dom values in the range from [1:4] as the values initially used 
in this algorithm. Velocity and position equations (5) and (6) 
are used. The Cauchy mutation here is applied to the values of 
both the self confidence and the swarm confidence factors 
c1and c2 as shown 
               𝐶1𝑖 = 𝑐1𝑖 + 𝛿                                                            (10) 
               𝐶2𝑖 = 𝑐2𝑖 + 𝛿𝑖                                                           (11) 
Where δ and δi denotes Cauchy random numbers. 
 
Figure 2, shows the Cauchy distribution. Different values for 
C1 and C2 are obtained. These values are then used in the ve-
locity update equation which hence updates the position ob-
taining a new particle’s position. This new mutated particle is 
hence used in the search space to find another solution and 
hence solves the problem of the PSO trapping at a local opti-
mum. Since the expectation of the Cauchy does not exist, the 
variance of the Cauchy distribution is infinite so that the Cau-
chy mutation could make the particle have a long jump. By 
adding the update equations (10) and (11), the IAPSO greatly 
increases the probability of escaping from a local optimum.  

  
Fig. 2.  Cauchy Distribution [17] 

 
The objective function was developed as follows:  
Fitness = ∑ (|W(θ). AFO(ψ)π/2

θ=−π/2 − AFi(ψ)|) + C(θ)     (12) 
Where AFi(ψ)  is the initial radiation pattern of the Chebyshev, 
wnull(θ) is a function that specifies the wide nulls locations 
and AFO(ψ) is the optimized radiation pattern. The objective 
function is formed by adding two terms. The first term is the 
summation (over all sample points) of the squared value for 
the difference between the desired and the initial array factors. 
The second term is function that related to the SLL and the 
depth of the null constraints. C(θ) is a term added to make the 
SLL at the desired level with achieving the required null 
depth.  

3.3.1 The proposed Algorithm  
(Step 1) Data preparation: Calculation of the initial amplitude 
excitation coefficients of the Dolph Cheby-shev array using a 
formulated MATLAB code for the array design. 
(Step 2) Particle initialization and PSO parameter settings: 
generate the initial particles and set the parameters including 
number of particles, number of maximum iterations, the iner-
tia weight, the velocity and position equations (5) and (6), the 
initial self and swarm confidence factors and the fitness func-
tion used. 
(Step 3)Fitness evaluation: calculate the fitness for each parti-
cle fitness(i). 
(Step 4) Local and Global best positions calculations: 
If (fitness(i) ≤ pi(k) ) then set pi(k) = fitness(i).if (pi(k) ≤
pg(k)) then set  pg(k) = pi(k). 
(Step 5) Adopt the Cauchy mutation operator to manipulate 
both C1i and C2i . 
(Step 6) Update the particle’s velocity again using the mutated 
C1i and C2i . 
(Step 7) Update the particle’s position and form new particle 
swarms. 
(Step 8) Compute the fitness function value of each particle in 
accordance to the updated position. 
(Step 9) Compare the current optimal particle with last genera-
tional optimal particle and update global and personal best.  
(Step 10)Stop Condition checking: This is the condition under 
which the search process will terminate. In this study, the 
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search will terminate if the following criteria is satisfied: The 
number of iterations reaches the maximum allowable number. 
If the termination criterion is satisfied, then stop, or else go to 
step 3. 
 
A computer program in MATLAB is developed to optimize 
the array factor of the antenna array described for the ampli-
tude only control using IAPSO. The results are described in 
the next section. 

4. SIMULATION RESULTS 
4.1 IAPSO simulation results 
For all the subsequent results shown, the optimization process 
will be initialized by a classical chebyshev design of 20-
element linear array with λ/2 equal inter-element spacing and 
the SLL do not exceed -30 db.  
 
The prescribed IAPSO is applied which is successfully able to 
enhance the optimization results than the previous used EPSO 
and the simple PSO algorithms. The prescribed nulls were 
depicted in the radiation pattern in the band [10, 30] degrees. 
Since amplitude only control is used here, a symmetric image 
wide null is observed at the sector [-10,-30]. The parameters 
used by the algorithm are as shown in table 1. 
 

TABLE 1: THE MAIN OPTIMIZATION PARAMETERS USED IN IAPSO 
Parameter Label Setting 

Inertia weight w 0.4 
Initial Self con-

fidence 
c11 2 

Initial Swarm 
confidence 

c21 2 

Total number of 
iterations 

i 1700 

 
At first, IAPSO algorithm was implemented to optimize the 
objective function (11) without the use of the second term C(θ) 
which means that no constraint is applied on the peak SLL. 
The term  W(θ) in the objective function (12) is described as 
follows 
 
W(θ) =
� 50                if θ1 ≤ θ ≤ θ2  (wide null region)
    1                 otherwise                                                     

        (13) 
 
This resulted in achieving a perfect wide null in the target sec-
tor and at the same time the main beam width is not changed. 
However, the peak SLL was increased which is not desirable. 
To allow the full control of the peak SLL to be less than or 
equal -30 db and to achieve a wide-band null at the exact 
placement simultaneously, the following term C(θ) is added to 
the cost function as in (12). 
 
 
C(θ) = � 5                  if MSL1 ≤ −30 orMSL2 ≤ −50 

   0                               otherwise                               
     (14) 

 
However, as expected it is found that as the wide nulls be-
come deeper, more broadening in the main beam width takes 
place. The maximum allowable tolerance in the main beam 
width broadening is controlled by the definition of band range 
of MSL1 used in (14). 
 
Figure 3 shows the radiation pattern of the classical Dolph-
Chebyshev linear array. 
 

 
       Fig.  3.  Radiation pattern of a classical Dolph-Chebyshev linear array 

of 20 elements with SLL envelope at -30 db. 
 

The values of the amplitude excitation coefficients of the Che-
byshev radiation pattern shown are taken as the initial excita-
tion coefficients value for the optimization process. The verifi-
cation of the results of the simple PSO and the EPSO was 
done. The codes were successfully implemented to verify their 
results. The Simple PSO and the EPSO when applied to the 
linear 20 elements Chebyshev array resulted in wide null of -
56 db and -67 db respectively. These results are shown in fig-
ures 4 and 5 respectively. 

 
Fig .  4 . Radiation pattern of an optimized Chebyshev linear array using 

simple PSO with null depth at -56 db. 
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Fig.5. Radiation pattern of an optimized Chebyshev linear array using 
EPSO with null depth at -67 db. 

 
The IAPSO algorithm is applied to the initial amplitude excita-
tion coefficients. The array pattern is optimized to show a per-
fect wide null depth at the desired band in between 0.3 and 0.5 
which is the required band [10, 30] degrees. It was challenging 
in this optimization problem to keep the main beam width the 
same without change which extends from -0.2 to 0.2 which 
means its bandwidth equals approximately 23 degrees. Maxi-
mum allowable tolerance in the main beam broadening is con-
trolled in the IAPSO. It was also important to get a full con-
trollable MSLL at -30 db without any increase from this level. 
These requirements were successfully achieved as shown in 
figure 6. 

 
Fig.6. Perturbed (constrained optimized) -30 db Chebyshev pattern (N=20 
elements) with main beam steered at 0˚ with symmetrical wide nulls im-

posed at θ=10˚ to 30˚ of -75 db. 
 

The above figure shows maximum perfect wide nulls obtained 
in the required band at -75 db. It is observed from the figure 
that the main beam bandwidth is nearly the same and the 
MSLL of the optimized figure are preserved at the same level 
of -30 db.  This proves that the IAPSO is able to achieve better 
results than the simple PSO and the EPSO. 

4.2 Results Comparison 
In this subsection, the results of the optimization using the 
IAPSO algorithm will be compared with the simple PSO and 
the EPSO algorithms. This comparison shows the superiority 
of the IAPSO over the other two algorithms. The radiation 
pattern result of the EPSO is shown in figure which shows that 
a wide null was achieved at -67 db. 
 
The comparison between the algorithms (Simple PSO, EPSO 
and IAPSO) from the point of view of the convergence curves 

is considered. Figures 7, 8 and 9 show the convergence curves 
of the Simple PSO, the EPSO and the IAPSO respectively. 

 
 

 
Fig.7. Convergence curve of the simple PSO scheme to achieve the target 

wide null at the determined band. 
 
 

 
Fig.8. Convergence curve of the EPSO scheme to achieve the target wide 

null at the determined band. 
 
 

 
Fig.9. Convergence curve of the IAPSO scheme to achieve the target 

wide null at a certain desired band. 
 

It is clearly shown that the IAPSO algorithm had greatly im-
proved the optimization results. The number of iterations was 
clearly decreased to be 1700 iterations. The convergence was 
faster using the IAPSO than the simple PSO and the EPSO. 
Making fast convergence leads to decreasing the processing 
time a lot. The null depth was decreased in the desired band to 
-75 db along with preserving the main beam nearly the same 
having the same band width as well as the MSLL at the same 
level. As an overall, the IAPSO was able to achieve better re-
sults than both the EPSO and the simple PSO. 

5. SENSITIVITY ANALYSIS OF THE PROPOSED IAPSO 
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In this section, the IAPSO scheme is applied on different case 
studies to show its efficiency and its ability to achieve nearly 
the same results if applied on different structures of arrays. 
Two case studies are also used to apply the IAPSO on a Che-
byshev array with increased number of elements and on a dif-
ferent array antenna distribution with the same number of 
elements. The two case studies are shown below. 
 
1) Increasing the number of elements of the array. This 

scheme was followed to show the effect of using the the 
simple PSO, EPSO and IAPSO algorithms on the same 
Chebyshev linear array but with increasing the number of 
elements to 35 elements. 

 
       The result of the proposed IAPSO algorithm is shown in 

figure 7. The figure shows that a perfect wide null depth 
achieved was -60 db in the required band [10˚, 30˚]. This 
proves that even using bigger arrays than the initially 
used shows the ability of the algorithm proposed to 
achieve good results. 

 
Fig.10. Dolph-Chebyshev linear array of 35 elements with wide null 

depth achieved at -60 db at the band [10˚, 30˚] using IAPSO. 
 

The convergence curve in figure 11 shows that by increas-
ing the number of elements of the array to 35, conver-
gence of the algorithm occurs with nearly the same speed 
as when using only 20 elements. This signifies that faster 
convergence occurs if compared to the EPSO and the sim-
ple PSO whose convergence curves for 35 elements of 
Chebyshev array are as well shown in figures 9 and 10 re-
spectively. 
 

 
Fig.11. Convergence curve for Chebyshev linear array with 35 ele-

ments using IAPSO. 
 

2) Using a different array antenna distribution with the same 
number of elements.  

 The array distribution that was also used was the Taylor          
distribution. The Taylor linear array antenna of 20 ele-
ments was also designed. The Taylor produces a pattern 
whose inner minor lobes are maintained at a constant lev-
el and the remaining ones decrease monotonically. Taylor 
one parameter array results in a monotonically decreasing 
pattern [18]. For some applications, such as radar and 
low-noise systems, it is desirable to sacrifice some beam 
width and low inner minor lobes to have all the minor 
lobes decay as the angle increases on either side of the 
main beam. In radar applications this is preferable be-
cause interfering or spurious signals would be reduced 
further when they try to enter through the decaying minor 
lobes. The initial Taylor design of the elements was done 
using the following formulas to calculate the initial ampli-
tude excitation coefficients 

In(z) = �J0 �jπB�1 − �2Z
l
�
2
�         − l

2
≤ z ≤ + l

2

0                                      otherwise
              (15)      

Where  J0 is the Bessel function of the first kind of order zero, l 
is the total length of the continuous source and B is a constant 
to be determined from the specified side lobe level. These ini-
tial amplitude coefficients are used to get the radiation pattern 
of the initial design of the Taylor linear array antenna which is 
shown in figure 12. Mathematical details of Taylor one param-
eter method for linear array are given in [10]. 

 

Fig.12. The radiation pattern of the Taylor line-source linear array of 20 
elements. 

 
The IAPSO scheme was then applied to the designed Taylor 
distribution linear array of 20 elements. The same objective 
was to get wide nulls at the specified position band of [23.5˚, 
30˚].  
 
The IAPSO could successfully achieve nearly the same success 
rate that it achieved in using the Dolph-Tchebyshev array 
which is shown in figure 13. 

 

 

 
 

 

 

 
 

 

 
 

    

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-80

-60

-40

-20

0

M
a

g
n

it
u

d
e

 (
d

B
)

Sin(θ)

 

 Initial RP
MSLL
IAPSO RP

200 400 600 800 1000 1200 1400 1600
-20

-15

-10

-5

0

5

10

Iteration number

V
al

ue
 o

f F
itn

es
s 

Fu
nc

tio
n

 

 

IAPSO

 
 

 
 

    

 

 

 
 

 

 

 

 
 

 
 

    

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-100

-80

-60

-40

-20

0

M
a
g

n
it

u
d

e
 (

d
B

)

Sin(θ)

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016                                                                                                     1159 
ISSN 2229-5518  

IJSER © 2016 
http://www.ijser.org  

 
Fig.13. Taylor distribution linear array antenna of 20 elements with 

perfect wide nulls achieved at -72 db in the band [23.5˚, 30˚]. 
 

It is shown that the IAPSO was able to achieve wide nulls in 
the specified band with depth of -72 db. The convergence 
curve is also shown in figure 14. It is clear that the IAPSO is 
the fastest in convergence than both the simple PSO and the 
EPSO. 
 

 
Fig.14. Convergence Curve of Taylor one parameter distribution array 

using IAPSO scheme. 
 
The obtained results are compared all together in table 2 to 
show the robustness and the high efficiency of the IAPSO al-
gorithm. 
 

 
TABLE 2: COMPARISON OF THE RESULTS OBTAINED OF THE THREE 

ALGORITHMS USED FROM THE POINT OF VIEW OF THE MAXIMUM 
NUMBER OF ITERATIONS USED AND THE NULL DEPTH ACHIEVED. 

 
Array 
types 

Comparison 
points 

SPSO EPSO IAPSO 

Chebyshev 
20 element  

iteration 10000 10000 1700 
Null depth -56 db -67 db -75 db 

Chebyshev 
35 ele-
ments 

iteration 10000 10000 1700 
Null depth -50 db -55 db -60 db 

Taylor one 
parameter 

iteration 10000 10000 1700 
Null depth -52 db -63 db -72 db 

 
This shows the robustness of the applied algorithm. It proves 
that the IAPSO can be successfully applied on different sys-
tems and can achieve wide nulls in the specified directions of 
interference with high performance and efficiency. 
6. CONCLUSION 

In this paper, a novel method has been proposed to solve the 
problem of null placement in linear array systems. The meth-
od used uses amplitude coefficients perturbations to achieve 
the objective desired of null placement. The computer simula-
tion results shows that the IAPSO is capable of forming perfect 
wide nulls at any prescribed direction controlling the ampli-
tude of each array element while keeping the pattern as close 
as possible to Chebyshev initial pattern. The algorithm had 
shown its robustness when used with different antenna sys-
tems with increased element’s number and different array 
distribution like the Taylor one parameter array. The IAPSO 
can obtain the patterns with satisfactory null depth and max-
imum side lobe level. The algorithm had shown its fast con-
vergence and its great ability to achieve the best optimum so-
lution and being applicable in real world problems compared 
to other algorithms such as the SPSO and the EPSO. 
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